If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x+3=0
a = 3; b = -19; c = +3;
Δ = b2-4ac
Δ = -192-4·3·3
Δ = 325
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{325}=\sqrt{25*13}=\sqrt{25}*\sqrt{13}=5\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-5\sqrt{13}}{2*3}=\frac{19-5\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+5\sqrt{13}}{2*3}=\frac{19+5\sqrt{13}}{6} $
| 13/14=91/x | | 4m-5(3m+10)=-126 | | 5/2y=11 | | 2w+-3=-14.8 | | 1(1+r)^10=2 | | 0.75x-6=7x+3 | | 3/4x-6=7x+3 | | 2(3x-12)=3(2x-8) | | 8x+16=189 | | 1^2(x+8^3)=9^2 | | 3y+32y+12=0 | | 1/2(x+8/3)=9/2 | | 6.78+k=7.89 | | -2-7q=-8q-8 | | 3x-12/6=2x-8/4 | | y=12÷11.2 | | -2y=-9-y | | 2g-9=g | | 7.5t^2+30t-120=0 | | -5-5z=-10z | | 12y-8=12+10y | | 7.5t^2+10t+120=0 | | A(2)+b=7 | | 8x+7+4=-6x+7+6 | | (X-5)(x-12)=0 | | 7.5t^2-10t-120=0 | | -2n-8=-6n | | 7x+1-5=2x+1-5 | | (2+x)(3+2x)=9x+6 | | 7y=7+8y | | -8-4h=-6h | | 6x-35=3 |